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Abstract 

 

In this note, we give a generalization of the results for the profit maximization problem in the case of 

the Cobb-Douglas production function presented by Liu in [Appl. Math. Comput. 182 (2006), 1093-

1097]. By using geometric programming, we solve a profit maximization problem in the case of the 

CES production function and show how the results obtained by Liu can be derived from our results.  
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1. Introduction 

 

One of the most important problems in the theory of the firm is certainly the profit maximization 

problem. On one hand, traditionally, this problem is solved by differential calculus. On the other hand, 

the geometric programming (GP) technique was proposed by Liu [7] as a complementary approach in 

solving the profit maximization problem with Cobb-Douglas technology. Considering a Cobb-Douglas 

production function, given by  

 ( )1 2
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, ,..., i

n

n i

i

f x x x A x


=

=  ,  (1) 

the profit maximization problem becomes 
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where p>0 is the market price per unit, A>0 is the scale of production, xi>0, vi>0, i = 1, 2, …, n, are input 

quantities and input prices respectively, and φi>0, i = 1, 2, …, n, are the elasticities of the Cobb-Douglas 

production function subject to 
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By using signomial geometric programming, Liu [7] obtained the result of problem (2) as follows: 
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In this note, we solve a profit maximization problem in the case of the CES production function and 

show how the results obtained by Liu can be derived from our results. 

 

2. Preliminaries 

 

Here, we first introduce the CES production function, defined by 
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where αi>0, i = 1, 2, …, n, are the given allocation coefficients subject to 
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σ is the degree of homogeneity subject to 

 0 1  ,  (8) 

and ρ the is substitution coefficient subject to  

 0, 0, 1 0    +  +  .  (9)  

Constraint (8) is the necessary and sufficient condition for the strict concavity of the CES production 

function (see [1]). Furthermore, constraint (8) ensures the correct definition of the profit function (see 

[6]). 

 

Considering the CES production function, the profit maximization problem becomes 
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To solve the problem (10), we will need a power mean inequality.  

 



E F Z G  W O R K I N G  P A P E R  S E R I E S                                     2 1 - 0 5  

 Page 5 of 10 

Lemma 1 [Power mean inequality] Let 2, ,n n  0,ix   and 0, 1,2,..., ,iw i n =  such that 

1
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= . Then, for all r>0 the following inequality holds 
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Equality in (11) holds if and only if 
1 2 nx x x= = = . 

 

The proof of the Lemma 1 can be found in [4]. 

 

 

3. The profit maximization problem with CES technology 

 

According to [2, 3, 5], we can transform problem (10) into a GP problem in two steps as follows. 

 

Step 1. Problem (10) is equivalent to 
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Step 2. Problem (12) is equivalent to the GP problem 
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Note that the degree of difficulty of problem (13) is equal to d = total number of terms – total number 

of variables – 1 = (2n+2) - (n+2) - 1 = n–1. According to [5], the corresponding dual of (13) is the 

following problem: 
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where  0 0 0
T

=0  is a null vector with n+2 components, and β, γ, δi, εi, i = 1, 2, …, n, are dual 

variables. From (15) we get  

 1 = = ,  (16) 
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Using (16) (19), (14) becomes 
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Now, problem (20) becomes  

 

1

111
1 1 1 1

1
0

1
1

max
1 1

i

i
n

ii

n
i i

i

i

vp A
M



 


 









 


=

−
−

− − − −

+


=
=

  
      

=       − −     
    

 .  (22) 

Let us solve problem (22) by using Lemma 1. According to (11), for all r>0, the following inequality 

holds: 
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Since ( )1 0 −  and the function 1x x


− is increasing (for x>0), from (22) and (23) we have  
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for all r>0. By choosing 
1

r
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+
, from (24) we get 
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Equality in (23)-(25) holds if and only if 
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From the definition of , 1,2,..., ,i i n = and (26) we get 
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Thus, by definition of the strict global optimum, the strict global maximum M of problem (22), and at 

the same time of problem (14), is given by the expression on the right hand side of the inequality (25), 

and it is achieved if and only if , 1,2,..., ,i i n = satisfy (27). In addition, M represents the strict global 

minimum of problem (13). Furthermore, since ( )
1

1max minf f
−

−=  for a positive function f, we can 

find πCES via (12)-(13) as follows 
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 Now, from (17), (18) and (27) we get the dual variables 
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According to [5], from (13), (16)-(19) and (29), we have 
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Thus, the strict global maximum of the profit maximization problem with CES technology πCES is given 

by (28), and it is achieved for the input values given by (34).  
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4. The profit maximization problem with Cobb-Douglas technology 

 

Let us first show how the Cobb-Douglas production function (1) can be obtained from the CES 

production function (6). Let  
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Since (7) holds, by taking a natural logarithm and after applying the L’Hospital’s rule, from (35) we 

have  

 

( )
'

1 1

0 0

1

1 1

1

1

ln ln

ln ln lim ln lim

ln ln

ln ln ln .
1

j

j j

j

n n

j j j j
L H

j j

n

j j

j

n n

j j n
j j

jn
j

j

j

x x x

U A A

x

x x

A A A x

 

 


 



  








− −

= =

→ →
−

=

= =

=

=

 
−  

 = + = + =

 
= + = + =  

 

 



 




  (36) 

Let  

 , 1,2,..., ,j j j n = =   (37) 

and note that 
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Thus, the Cobb-Douglas production function given by (1) is the limit when ρ→0 of the CES production 

function given by (6).  

 

Further, let us show how πC-D from (4) can be obtained from πCES. From (28) we have 
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where  
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Since (7) holds, by taking a natural logarithm and after applying L’Hospital’s rule, from (41) we have  
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Thus, from (37) and (40)-(42) we have 
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Thus, the profit πC-D from (4) is the limit when ρ→0 of the profit πCES from (28).  

 

Finally, let us show how 
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Since (7) and (37) hold, from (34), (43) and (44) we have 
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Thus, 
C D

ix −
from (5) is the limit when ρ→0 of , 1,2,...,CES

ix i n= , from (34). 
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