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Abstract 

 

Ever since their initiation 60 years ago, the harmonized European Business and Consumer 

Surveys (BCS) have risen to the challenge of performing as a solid data pillar for quantifying 

leading indicators of economic activity. However, mainstream research mainly focuses on 

publicly available composite BCS confidence indicators and inspects their predictive 

accuracy. We depart from this stance by considering a battery of novel techniques for 

quantifying BCS-based leading indicators. We build upon the recently established weighted 

balance method, forecast disagreement, and surprise index. Additionally, we differ from the 

standpoint of rational expectations by introducing indicators of irrational sentiment and 

adaptive expectations, which have not previously been used in BCS studies of this sort. Our 

analysis in industry, consumer, and retail trade sectors of 28 European economies reveals that 

most of these novel techniques (especially irrational sentiment and adaptive expectations) 

produce more accurate predictions of economic activity than standard BCS benchmarks. 

These results are robust to several panel estimation procedures (heterogeneous panel Granger 

causality test and panel vector autoregressions, in particular). 
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1. Introduction 

Fourcade, Ollion and Algan (2015) have shown that academics from the field of economics 

tend to see themselves as dominant over other social scientists. Economists think other 

disciplines such as e.g. psychology cannot bring any added value to their methodological 

skills or their overall knowledge. However, the global financial crisis has vividly 

demonstrated that mainstream economic models are not able to adequately explain (let alone 

forecast) extreme events such as the abrupt economic downfall in 2008. (Macro)economists 

have responded by introducing latent psychological variables (such as perceptions and 

expectations of economic agents) in their analyses. The pivotal role in these efforts has been 

assigned to Business and Consumer Surveys (BCS). 

The aim of BCS is to quantify economic agents’ assessments of phenomena such as inflation, 

unemployment, the general economic climate in the country, as well as of specific variables 

related to their household or company. BCS are today fully methodologically harmonized on 

the EU level through The Joint Harmonized EU Programme of Business and Consumer 

Surveys, and are regularly conducted on a monthly basis in five sectors of each EU economy: 

the consumer sector, manufacturing industry, construction, services, and retail trade 

(European Commission, 2020). Since their introduction in 1961, they have “travelled” a long 

road to become an indispensable tool for macroeconomic analysis.  

After 2008, the empirical literature on the role of economic sentiment in governing various 

forms of economic activity (in the vein of a self-fulfilling prophecy) has literally proliferated 

(see e.g. Eickmeier and Ng 2011; Bachmann and Sims 2012; Sorić 2018). With that in mind, 

it is no surprise that BCS data has recently been (mostly successfully) utilized for short-term 

forecasting of reference macroeconomic variables (Van Arle and Kappler 2012; Sorić et al. 

2013; Claveria et al. 2018; 2019a; 2020) and stock market returns (Akhtar et al. 2010; Chen 

2011), as well as for elucidating consumer expenditures and political attitudes (Nguyen and 

Claus 2013), etc. Despite the well-established usefulness of BCS in short-term 

macroeconomic predictions, quite a few empirical questions still remain unanswered. First of 

all, several methodological modifications of European BCS sectoral indicators have recently 

been proposed. The main goal of this paper is to empirically assess these state-of-the-art 

methods for extracting BCS-based confidence indicators and evaluate their predictive 

characteristics in comparison to conventional BCS leading indicators.  
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For instance, a research direction worth pursuing is the concept of irrational sentiment, i.e. 

the component of agents’ economic sentiment not accounted for by fundamental economic 

variables (Baker and Wurgler 2006; Corredor and Santamaria 2015). The predictive accuracy 

of irrational sentiment may be considerably different than that of conventional BCS 

indicators, which will be scrutinized within this study.  

Another methodological advancement is suggested by Claveria (2010), who introduces the 

weighted balance method, taking into account the percentage of BCS respondents expecting 

no change in the evolution of the targeted economic variable. Such methodological alternation 

may lead to a change in the predictive accuracy of BCS indicators, but this topic has not been 

extensively covered in the literature. As a third methodological twist, we consider a recent 

geometric indicator of agents’ (dis)agreement (Claveria 2019; Claveria et al. 2019b). 

We build on these three approaches, but we also construct novel sectoral BCS indicators 

derived from the idea of a surprise index (Scotti 2016), as well as a novel set of BCS 

indicators defined through the lens of the adaptive expectations algorithm (Cagan 1956; 

Nerlove et al. 1979; Pfajfar and Santoro 2010). The latter two concepts have never been 

empirically quantified, nor has their predictive accuracy ever been assessed, so they constitute 

one of the contributions of this paper. 

Our second important contribution is a wide multisectoral perspective on the predictive 

accuracy of BCS indicators. We assess both monthly (industrial confidence) and quarterly 

(confidence in the retail trade and consumer sector) BCS data, covering all individual EU 

Member States. Relying on such unified methodology enables a straightforward comparison 

of the obtained results. This is particularly important because previous research efforts of this 

kind are limited in scope, meaning that they mainly focus on a limited number of countries 

(Bergström 1995; Hansson et al. 2005; Lemmens et al. 2005; Čižmešija and Sorić 2010), euro 

area as a whole (Gayer 2005), or only aggregate indicators of total economic activity 

(Bergström 1995; Hansson et al. 2005), instead of a disaggregated sectoral approach. The 

results of previous studies are thereby not directly comparable. In this sense, our research 

strategy resembles the most to Sorić et al. (2013), who apply a panel vector autoregression 

framework to 27 EU Member States and observe pronounced leading properties of BCS 

indicators, both in New and Old EU Member States.  

Thirdly, we apply a panel version of the heterogeneous Granger causality test that works well 

for heterogeneous datasets and has good small sample properties even in the case of cross-
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sectional dependence. Through such an estimation procedure, we avoid the trap of estimating 

a panel model and interpreting the obtained “on average” relationships as valid for each 

individual EU Member State. This is particularly important since previous studies of this kind 

neglect this issue (with the exception of Lemmens et al. 2005). 

The paper is conceptualized as follows. Section 2 briefly reviews the recent research efforts 

aimed at enhancing the predictive properties of BCS indicators. Section 3 presents the 

methodological foundations of the utilized panel Granger causality framework. Section 4 

pinpoints the main takeaways from the estimated panel models, while the final section 

concludes the paper and offers some directions for future work. 

2. Recent advances in BCS analysis  

When the 2008 world financial crisis enlightened the bitter truth about the inability of modern 

macroeconomic models to predict extreme events, economists were quite taken aback. 

Macroeconomic thought has consequently experienced a compelling shift based on some 

new-old ideas. The famous mid-crisis work of Akerlof and Shiller (2009), summoning 

Keynes’s (1936) animal spirits, restored the notion of human psychology being the crucial 

driver of economic developments. Realizing that the economic system is not formed of a 

uniform set of fictional agents, particular importance has lately been attributed to the human 

factor in the economy. According to some novel trends, the field of economics seems to 

progressively strive to become an integral part of an interdisciplinary system that 

encompasses and strongly connects social sciences, such as psychology, sociology and media 

sciences. Behavioral elements are persuasively becoming the centerpiece of macroeconomic 

models in a fair amount of new research (e.g. Barsky and Simms 2012; Bachmann et. al 2013; 

Baker et al. 2016; Benhabib and Spiegel 2019; Shapiro et al. 2020). 

An irreplaceable role in an efficient, yet utterly simple way of measuring economic sentiment 

is attributed to the BCS Programme. Although conceptually not new, BCS is a subject of 

continuous harmonization and methodological advances, with a particular goal to improve 

short-term forecasting and timely detection of business cycle turning points (European 

Commission 2020). To this end, a whole spectrum of BCS indicators has evolved to track 

economic agents’ perceptions, assessments and expectations regarding a wide array of 

variables from their economic surrounding (e.g. financial situation of the household/firm, 

propensity to save/consume, general economic outlook in the country, inflation, 

unemployment, etc.). BCS provide a wide sectoral coverage by calculating individual 
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confidence indicators for construction, services, manufacturing industry, retail trade and 

consumers – the latter three being the pivotal sectors for our study. 

The quantification procedure within BCS starts with calculating the seasonally adjusted 

balances of answers (Bt) to monthly/quarterly survey questions: 

ttt MPB   

)5,0()5,0( ttttt MMMPPPB   

(1) 

(2) 

where Pt is the percentage of respondents expecting a particular economic variable to increase 

in the future, and Mt is the percentage of those who expect the variable to fall. Equation (1) is 

commonly used for questions with three answer modalities (expected rise/fall/status quo), 

while Equation (2) is specifically used within consumer surveys, offering respondents three 

additional categories – highly optimistic (PPt), deeply pessimistic (MMt) and the “don’t 

know” option. 

Individual confidence indicators are calculated as unweighted arithmetic means of seasonally 

adjusted balances of chosen response balances. We consider three sectoral confidence 

indicators in this paper. Industrial Confidence Indicator (ICI) is calculated as the mean of 

response balances to questions related to the current order books, current stock of finished 

products, and the expected production level in the next 3 months (European Commission 

2020: 18). Consumer Confidence Indicator (CCI) is conceptualized as the mean of response 

balances to questions on the financial situation of the household in the last and over the next 

12 months, general economic situation in the following year, and the propensity to major 

purchases over the next 12 months (European Commission 2020: 19). Finally, the Retail 

Trade Confidence Indicator (RTCI) is designed as the average response balance of questions 

on sales in the past three months, current stock volume, and the expected sales in the 

following three months (European Commission 2020: 20). The results of these quantification 

procedures are usually considered to be (at least) one period ahead forecasts (leading 

indicators) for their reference macroeconomic series (Claveria 2010). 

Although proven particularly useful in nowcasting and forecasting, the information contained 

in survey driven indicators have still not been used to their full potential. Hence, in the recent 

past, economic literature yielded several new modifications of the “classic” BCS indicators 

with characteristics yet to be more thoroughly investigated. Hereby we bring a short review of 

some new ideas in prediction-oriented BCS analysis. 
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a) Weighted Balance Method 

Building on the notion that survey data necessarily entail measurement error due to 

converting unobservable expectations into quantitative expectation estimates, Claveria (2010) 

opts for a straightforward alternation of Equations (1) and (2). Presuming as well that the 

proportion of respondents who are neither optimists nor pessimists is quite high, he corrects 

the calculation of the BCS balance statistic by considering the proportion of respondents 

expecting economic variables to stay unchanged in the future. The new, weighted balance 

statistic (WBt) is calculated by Equation (3): 

t

t

tt

tt
t

E

B

MP

MP
WB









1
 (3) 

where Bt is again determined as the difference of the percentage of respondents choosing an 

optimistic answer (Pt) and the percentage of pessimists (Mt). Et is the percentage of 

respondents anticipating the variable of interest to remain constant. 

The use of this novel balance statistic in different settings resulted in overall lower 

measurement and forecasting errors (Claveria 2010), proving that even the slightest correction 

of the standard balance statistic might be highly effective when aiming for more accurate 

predictions. To inspect if this is the case for the industry, consumer, and retail sector, we 

recalculate ICI, CCI, and RTCI using the weighted balance approach instead of the classic 

balance statistics presented in Equations (1-2). 

b) Surprise Index 

Another new sentiment-based economic indicator is brought by Scotti (2016). This real-time, 

real-activity indicator is termed surprise index, as its purpose is to point to economic data 

surprises, assessing how confident were agents about the economy ex-post in contrast to the 

actual data realizations. More specifically, the indicator is constructed to determine the 

deviation of forecasts (measured via Bloomberg median expectations) from the official 

releases of selected macroeconomic variables. Negative values of the surprise indexes, which 

indicate agents were more optimistic about the economy ex-post, are associated with the 

episodes of the Great Recession. On the other hand, positive values are related to post-crisis 

recovery periods, when actual numbers exceeded lowered expectations due to recession 

(Scotti 2016).  
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While proven to be a useful and applicable parsimonious measure of economic data surprises 

(addressing real agents’ sentiment), the index could nevertheless be further modified by 

linking its background concept to BCS data. Namely, we propose an alternation in the 

surprise index (supt) quantification to be carried out relying explicitly on the BCS balance 

statistics: 

 
(4) 

where  is the balance of answers to backward-looking survey questions (answered in 

period t), regarding agents’ perceptions of current and past economic developments. On the 

other hand, is the balance of answers to forward-looking questions, measuring agents’ 

expectations of future developments (formed in period t-k for period t).  

In that manner, economic data surprises could be calculated only for the sectors with surveys 

containing both forward- and backward-looking questions concerning the same economic 

variable (specifically, manufacturing industry, retail trade and consumer sector). However, the 

gain with this modification is the possibility of its computation and comparison for all the EU 

countries, as well as getting the needed scope for a comprehensive forecasting exercise. 

To be specific, the surprise index for the industry sector is obtained by applying Equation (4) 

on response balances for questions 1 and 5 in the industrial business survey (questions 

regarding actual production in the past three months and the expected production level in the 

next three months, respectively). By analogy, surprise index for the retail sector is calculated 

using responses from questions 1 and 4 for that sector (assessing the past and expected 

activity levels in the past/following three months). Finally, the European consumer survey 

comprises three pairs of backward-/forward-looking questions. The first two questions deal 

with past/future financial situation of the household, the third and fourth question refer to the 

past/future general economic situation, and the following two questions relate to aggregate 

price trends in the country. All stated questions are formulated for the period of last/next year. 

We apply Equation (4) in all three cases, and then extract the consumer version of surprise 

index as the arithmetic average of the results obtained in the first step (price trend result 

having a negative sign, implying a deterioration in economic climate).  

c) Disagreement Index 

A series of extreme and by all means unpredictable events in this millennium, such as terrorist 

attacks, world financial and debt crisis, Brexit and the recent COVID-19 pandemic has driven 
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a strand of authors to re-examine the economic uncertainty phenomenon (e.g. Bloom 2009, 

Baker et al. 2016, Baker et al. 2020). As from 2008, the literature is abundant with evidence 

of uncertainty negatively affecting developments on financial markets (Arellano et al. 2010), 

labor markets (Valetta and Bengali 2013), as well as goods and services markets (Knotek and 

Khan 2011). However, the question of truly reliable and unambiguous economic uncertainty 

measurement remains. 

During the last decade, a quite popular uncertainty proxy stems from survey-driven data, such 

as BCS, as it is the only direct source of information on economic agent’s expectations. This 

ex-ante-type uncertainty was introduced by Bachmann et al. (2013), who created the so-called 

disagreement measures of uncertainty, putting forward the dispersion (standard deviation) of 

response balances to forward-looking survey questions as a proxy for uncertainty. It was 

found that higher disagreement in expectations (of both managers and consumers) leads to 

larger forecasting errors. Given that uncertainty conditions are seen to inherently harden 

economic forecasting, the work of Bachmann et al. (2013) was later further upgraded (Rossi 

et al. 2016; Claveria et al. 2019; Claveria 2020). 

Applying the geometric discrepancy indicator from Claveria et al. (2019) to determine the 

level of managers’ and consumers’ disagreement about future economic activity, inflation and 

employment, Claveria (2020) estimates the dynamic response of corresponding 

macroeconomic variables to innovations in disagreement. The quality of these disagreement-

based uncertainty measures in foreseeing the macroeconomic series concerned is also 

assessed in an out-of-sample forecasting exercise for different time horizons. Although the 

results are somewhat mixed, they imply that more accurate economic growth predictions 

could be achieved with business managers’ disagreement. This conclusion is also valid for 

unemployment predictions with consumer unemployment discrepancy and for all examined 

time horizons.  

Our study aims to further scrutinize the predictive properties of disagreement-based 

indicators, using the discrepancy indicator (Dt) from Claveria et al. (2020) as a starting point: 













 


3/2

)31()31()31(
1

222
ttt

t

MEP
D  (5) 

with Pt, Mt, and Et denoting the same as in Equation (3). 

To ensure comparability of results, we apply Equation (5) to response balances of all forward-

looking questions that were utilized in the calculation of surprise indices: expected production 
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level in the following three months for the industrial sector, expected activity level in the next 

three months for the retail sector, as well as consumers’ expectations on the financial position 

of the household, general economic situation, and price trends in the following year. Since 

consumers respond to three forward-looking questions in this setting, we extract consumer 

disagreement as the arithmetic average of these three discrepancies obtained through Equation 

(5).   

d) Irrational Sentiment 

Departures of expectations from the official economics statistics evoke another aspect of 

cognition that orthodox macroeconomic theories are not (entirely) valid. Views on agents’ 

expectation formation and decision-making processes have certainly changed, meaning that 

economic agents are no longer considered fully informed and perfectly rational utility 

maximizers (Lagunoff and Schreft 1999; Sorić et al. 2020). Although the term bounded 

rationality was introduced by Simon (1957) long ago, shortcomings of the rationality concept 

became quite pronounced with the progress of behavioral economics, pointing that people, in 

essence, are not cognitively limited as much as they are guided by emotions. 

In the midst of the Great Recession, Akerlof and Shiller (2009) revive Keynesian ideas about 

economic agents being led by the so-called animal spirits (or pure sentiment), postulating that 

every serious economic downturn draws its roots from human nature. Although literature is 

not in consent with sentiment being the main cause of business cycle fluctuations, there is 

evidence implying economic confidence might affect macroeconomic aggregates in the 

presence of extraordinary events (Fuhrer 1993; Golinelli and Parigi 2004; Sorić 2018). 

Unpredicted and unusual events are associated with the culmination of people’s emotions, 

resulting in overreactions to economic stimuli (Katona 1975; Garcia 2013), herding behavior 

(Chen 2013) and other forms of irrational conduct. In times of economic distress sentiment 

tends to move independently of macroeconomic fundamentals (Throop 1992). 

That being the case, one might benefit from differentiating between rational and irrational 

economic sentiment. Barsky and Simms (2012) distinguish between animal spirits (irrational) 

and news (rational) shocks in a VAR framework, while a number of authors use similar 

argumentation to extract irrational sentiment and examine its impact on various forms of 

financial sector activities (e.g. Baker and Wurgler 2006; Corredor and Santamaria 2015; Das 

et al. 2020). All of these studies fragment economic sentiment into the rational component, 

entirely explained by macroeconomic fundamentals (facts), and the irrational component, 
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measuring agents’ excess optimism or pessimism beyond any rationally-sourced reasoning. 

However, this notion has insofar not been applied to quantify irrational sentiment as the 

leading indicator of the real economy, so we propose its initial application of that kind based 

on BCS data. This entails running regressions presented with Equation (6), as adopted from 

Baker and Wurgler (2006), Corredor and Santamaria (2015), and Das et al. (2020): 

 (6) 

where we alternate confidence indicators of interest (ICI, CCI, RTCI) as the dependent 

variables, and their reference macroeconomic series (industrial production for ICI, and 

personal consumption for CCI and RTCI) as corresponding independent variables.1 In this 

setting, εt represents the irrational component of sentiment. 

e) Adaptive Expectations Model 

Pursuant to the above discussion on irrationality, people’s behavior and expectations 

formation are rarely in line with the exact definition of full rationality as set forth by Muth 

(1961). However, the literature recalls some alternatives to the rational expectations 

hypothesis, proposing the use of adaptive expectations model (Figlewski and Wachtel 1981; 

Sorić et al. 2020). It seems fairly logical to assume that agents correct their expectations in 

subsequent periods according to the difference between their past expectations on relevant 

economic variables (measured by forward-looking BCS questions) and their respective 

perceptions of the realizations of these same variables (measured by backward-looking BCS 

questions). 

Building on a conventional adaptive expectations formation model (as presented in Pfajfar 

and Santoro 2010 or Sorić et al. 2020), we estimate two slightly different specifications to 

examine robustness of the obtained results. Monthly specifications are given as:  

 
(7) 

 
(8) 

where the dependent variable is the difference of response balances to forward-looking 

questions formed in periods t and t-12. Regarding the independent variable, in Equation (7) 

                                                                        

1 European Commission (2020: 16) strictly defines the index of industrial production volume as the reference series for ICI 

and private final consumption expenditure as the reference series for CCI and RTCI. This means that ICI, CCI, and RTCI are 

specifically designed to track the short-term trajectory of industrial production and private final consumption expenditure; 

justifying our choice of these variables as macroeconomic fundamentals in the right-hand side of Equation (6).  
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we assume that agents correct their expectations by looking at the discrepancy between their 

perceptions at period t (quantified as the balance of answers to backward-looking questions in 

t) and their expectations formed at period t-12 (obtained as forward-looking response balances 

from t-12). Since  in Equation (7) measures agents’ perceptions throughout the last 12 

months (including the current one), we also assess  in Equation (8) as an alternative 

measure of perception. This way we examine both end periods (t and t-12) scrutinized within 

the backward looking BCS questions. 

Using BCS data, it is possible to estimate Equations (7) and (8) only for the sectors with 

surveys containing linking backward- and forward-looking questions on the exact same 

variables, i.e. again the manufacturing industry, retail trade and consumer sector. As the 

expectation correction component is in the center of our interest, we extract fitted values of 

Equations (7) and (8) as the adaptive expectations for the three assessed sectors, and we 

examine their predictive properties.  

3. Data and estimation issues 

Our empirical analysis is based on survey responses from three BCS sectors: the industrial 

sector, consumers, and retail trade sector. These three specific areas are chosen because they 

constitute the appropriate framework for testing the utilitarian value of novel quantification 

techniques of BCS leading indicators. To be concrete, our version of the surprise index and 

the suggested adaptive expectations indicator entail a combination of backward- and forward-

looking questions on the exact same economic variables. This type of framework is present 

only in the three assessed BCS sectors, while the other two sectors (services and construction) 

do not offer such a specific dataset. 

We assess BCS data from each of the 27 EU Member States, plus United Kingdom. The 

dataset is seasonally adjusted using the ARIMA X-12 method.  

Let ICI, ICI_WB, sup_ind, dis_ind, and irr_ind denote the standard confidence indicator, the 

same indicator obtained via the weighted balance approach, surprise index, disagreement, and 

the irrational sentiment in the industrial sector (respectively). Let adapt_ind and adapt_ind12 

be the adaptive expectations indicators for the industrial sector, obtained via Equations (7) 

and (8), respectively.  

In the same manner, we denote the corresponding indicators for the consumer sector as CCI, 

CCI_WB, sup_cons, dis_cons, irr_cons, adapt_cons, and adap_cons12; while the analogous 
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indicators for the retail sector are denoted as RTCI, RTCI_WB, sup_ret, dis_ret, irr_ret, 

adapt_ret, and adap_ret12.  

European Commission (2020) strictly defines industrial production (ind hereinafter) as the 

reference series for the industrial sector, while consumer and retail trade confidence indicators 

are designed to track private consumption (cons hereinafter). It is important to notice that 

private consumption is published on a quarterly basis (as opposed to BCS data and industrial 

production, which are in monthly frequencies). To circumvent that issue, we calculate 

quarterly BCS indicators for the consumer and retail sectors as arithmetic averages of three 

corresponding monthly observations.  

All BCS data are obtained from the European Commission, while reference macroeconomic 

series are published by Eurostat. The examined panel dataset is unbalanced, depending on 

data availability. The longest observed time span for monthly data is from 2000M01 to 

2020M06 and 1996Q1 to 2020 Q2 for quarterly data. Exact time spans for each considered 

series are given in Table 5 in the Appendix. 

To evaluate the predictive characteristics of novel BCS indicators in comparison to 

conventional BCS confidence measures, we first need to choose the appropriate panel data 

method for testing Granger (non)causality. Previous research has mostly viewed this issue 

without examining potential cross-influences between individual countries (e.g. Bergström 

1995; Hansson et al. 2005; Gayer 2005; Sorić et al. 2013).  However, Lemmens et al. (2005) 

perform a rigorous El Himdi–Roy testing procedure, concluding that EU countries are rather 

heterogeneous in terms of output’s reactivity to BCS-based economic sentiment. Even more 

importantly, Lemmens et al. (2005) assess potential spillover effects among these countries in 

the sense that some countries’ output is perhaps responsive not only to its domestic economic 

sentiment, but also to the expectations of other countries. They find that core EU countries 

can easily be clustered in clubs of clout economies and receptive economies. Having this 

important result in mind, it is necessary to choose the method that allows for both 

heterogeneity in the influence between cross-sections, and for cross-sectional dependence.  

One of the common approaches allowing for cross-sectional heterogeneity is a procedure with 

time-fixed coefficients, developed by Hurlin and Venet (2001). Unfortunately, this method 

does not allow for cross-sectional dependence.  This procedure is upgraded in several papers 

(Hurlin 2005; Dumitrescu and Hurlin 2012). Such upgraded version of Granger non-causality 
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test for heterogeneous panels shows good statistical properties both in small samples and in 

the presentence of cross-sectional dependence.  

It should be mentioned that there are also other methods assuming heterogeneity and cross-

sectional dependence. For example, the Seemingly Unrelated Regressions (SUR) 

methodology (Zellner 1962) is also utilized in a fair amount of empirical research. The main 

attraction of SUR lies in the fact that it allows for free estimation of contemporaneous error 

covariances between countries. However, a precondition for utilizing the SUR model is a 

small number of cross-sections (N<10) and large time dimension T (Pesaran 2006). Since this 

is obviously not the case in our study (N=28), we opt for applying the non-causality test in 

heterogeneous panel data in the vein of Dumitrescu and Hurlin (2012).  

Dumitrescu and Hurlin (2012) consider the following panel regression to test whether 

itx Granger-causes ity :  

( ) ( )

, ,
1 1

p p
k k

it i t k i i t k i it
k k

y y x    
 

     , i = 1,…, N, t = 1,…, T, (9)  

with p N . The procedure assumes that lag orders p are identical for all cross-sections. 

ity  and itx  are two stationary variables, where ( )k

i is the coefficient of k-th lag of dependent 

variable ity  and ( )k

i is the coefficient of k-th lag of independent variable itx . The term i  is 

individual-specific, which can be expressed through fixed or random effects for each 

individual, while it  are i.i.d.  20,  . Cross-sectional specifics are controlled by introducing 

i   in the equation.  

From equation (9), it can be seen that coefficients ( )k

i are different for each individual, but 

they are constant over the time. It is possible that, for some cross-sections, the past values of 

variable ix  cause iy , while for some other ones there is no causality of that type. Therefore, 

different  ( )k

i  are essential.  

This test assumes two sources of heterogeneity. The first one is heterogeneity in the 

( )k

i coefficients for different i, and the second one is heterogeneity in the causal relationship 

from ix  and iy  for different i (implying that some cross-section units exhibit causality, and 

some do not). It is important to note that a Granger test not considering both possible sources 

of heterogeneity may lead to wrong conclusions. 
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The null hypothesis of Homogenous Non-Causality (HNC) test assumes no individual 

causality from ix to iy , which is defined as: 

   ( )

0 : 0, 1,..., , 1,...,k

iH k p i N      . (10)  
 

 

The alternative hypothesis (HEterogenous Non-Causality; HENC) assumes two subgroups of 

cross-sections. The first one consists of cross-sections with a non-existing causal relationship. 

The second group comprises cross-sections with a valid causal relationship, allowing for 

different ( )k

i coefficients. It is defined as: 

   

   

( )

1 1

( )

1

: 0, 1,..., , 1,...,

       1,..., , 0, ,...,

k

i

k

i

H k p i N

k p i N N





    

    
 (11)  

where  1 0, 1N N  .  

To obtain result of Granger test, Dumitrescu and Hurlin (2012) propose the following 

procedure2. In the first step it is necessary to run N separate regression in the form of equation 

(9) (for each cross-section separately). The second step entails running F tests of p linear 

hypothesis  ( ) 0, 1,...,k

i k p    to retrieve Wald statistics iW , and finally compute: 

1

1 N

i
i

W W
N 

  . (12)  

We assess two different tests statistics for this procedure: Z  and Z .  

Under the assumption that Wald statistics iW are independently and identically distributed 

across countries, it can be shown that the standardized Z  follows a standard normal 

distribution when T  and N  : 

   0,1)
2

dN
Z W p

K
    . (13)  

Also, for fixed T dimension with 5 3T p  , the approximated standardized statistics Z  

follows normal distribution: 

 
3 5 3 3

0,1)
2 2 2 3 3 1

dN N T p T p
Z W p

p p T p T p

    
       

    
. (14)  

As a separate robustness check, we asses a bivariate panel VAR model, assuming no 

heterogeneity of cross-section units:  

                                                                        

2 Description of the proposed procedure follows Lopez and Weber (2017). 
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1 , 1 , 1 1
1 1

2 , 2 , 1 1
1 1

p p

it k i t k k i t k i it
k k

p p

it k i t k k i t k i it
k k

y y x

x x y

   

   

 
 

 
 

   

   

 

 
, i = 1,…, N, t = 1,…, T, (15)  

where 1k  and 2k  are coefficients of k-th lag of dependent variable in corresponding 

equation while 1k  and 2k  are coefficients of k-th lag of independent variable in 

corresponding equation. The presented VAR model is estimated for each of the three 

examined BCS sectors, for each considered BCS indicator separately.   

System (15) is estimated via the Least Squared Dummy Variables (LSDV) estimator. Since 

our dataset is characterized by a large T dimension, endogeneity bias induced by the 

correlation between ,i t ky   and 1i is tolerably small (Kiviet 1995). We used Stata code 

provided by Cagala and Glogowsky (2014) for estimation purposes. 

4. Empirical results 

Before conducting the Granger causality test, cross‐sectionally augmented ADF (CADF) unit 

root test (Pesaran 2007) was performed. The test showed that variables ind and cons are I(1), 

i.e. stationary in first differences. All other variables are stationary in levels. Hence, to avoid 

spurious regression issues, all further econometric modelling is done with first differences of 

I(1) variables (dind and dcons, respectively). 

Table 1 summarizes the heterogeneous Granger causality test results for the industrial sector, 

while Tables 2 and 3 provide the same information for the consumer and retail sector 

(respectively). The optimal lag order for all considered Granger causality tests is chosen via 

the Bayesian Information Criterion (BIC). The obtained p-values for Z and Z test statistics 

reveal that in the vast majority of specifications (in all three tables) the null hypothesis of 

homogeneous non-causality is firmly rejected, leading to the conclusion that ( )k

i  in Equation 

(9) are not equal to zero for all examined countries. Therefore, for each particular bivariate 

case, we should be able to extract a subgroup of economies exhibiting causality in the 

observed variables, as well as a subgroup of economies with no evidence of causality. The p-

values presented in the body of the tables indicate possible rejection of the heterogeneous 

non-causality hypothesis at conventional significance levels.  
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Table 1. Results of Granger non-causality test for heterogeneous panel (industrial sector) 

 
ICI ICI_WB ind_sup ind_dis ind_irr ind_adapt ind_adapt12 

Homogenous Non-Causality (HNC) vs HEterogeneous Non-Causality (HENC) hypothesis 

Z  (p-value) 0.0000 0.0000 0.0001 0.3823 0.0000 0.0000 0.0000 

Z  (p-value) 0.0000 0.0001 0.4150 0.0000 0.0000 0.0000 0.0000 

lags 2 2 2 2 2 1 2 

Austria 0.0553* 0.0251** 0.0142** 0.7268 0.0221** 0.0023** 0.0055** 

Belgium 0.0417** 0.0327** 0.0386** 0.7908 0.0169** 0.3204 0.0179** 

Bulgaria 0.0001** 0.0009** 0.0485** 0.3270 0.0000** 0.0000** 0.3130 

Croatia 0.0508* 0.0544* 0.8890 0.4467 0.0195** 0.6389 0.7685 

Cyprus 0.0262** 0.1194 0.504 0.0098** 0.0029** 0.0383** 0.3256 

Czechia 0.0524* 0.026** 0.0863* 0.6580 0.075* 0.0006** 0.0326** 

Denmark 0.0006** 0.1342 0.4033 0.9703 0.0003** 0.1147 0.1074 

Estonia 0.0011** 0.0082** 0.0023** 0.2837 0.0019** 0.0002** 0.0000** 

Finland 0.0001** 0.0004** 0.2985 0.4511 0.0000** 0.1816 0.0447** 

France 0.1844 0.0591* 0.2356 0.2611 0.0949* 0.0028** 0.3799 

Germany  0.0000** 0.0005** 0.1742 0.0294** 0.0000** 0.0015** 0.0036** 

Greece 0.2709 0.4252 0.5105 0.3015 0.1182 0.1438 0.4108 

Hungary 0.2513 0.2434 0.2675 0.2696 0.0243** 0.0054** 0.0659* 

Ireland 0.5895 0.4255 0.6811 0.0386** 0.3339 0.6201 0.7208 

Italy 0.0005** 0.0097** 0.4741 0.7000 0.0003** 0.0000** 0.083* 

Latvia 0.0387** 0.4891 0.0582* 0.5931 0.0259** 0.0001** 0.0003** 

Lithuania 0.4244 0.3134 0.2395 0.9363 0.2984 0.3092 0.1372 

Luxembourg 0.0599* 0.6437 0.2081 0.9624 0.0513* 0.0832* 0.4500 

Malta 0.6915 0.6351 0.3587 0.6615 0.5831 0.9311 0.4566 

Netherlands 0.0378** 0.1774 0.0235** 0.7864 0.0182** 0.3384 0.3580 

Poland 0.3935 0.7511 0.5892 0.2796 0.6842 0.0010** 0.5795 

Portugal 0.0002** 0.0003** 0.4458 0.2140 0.0016** 0.1594 0.8369 

Romania 0.0448** 0.5702 0.9365 0.2682 0.0482** 0.0073** 0.8307 

Slovakia 0.1627 0.3895 0.6471 0.6162 0.1629 0.6721 0.8691 

Slovenia 0.0000** 0.0009** 0.0203** 0.8622 0.0000** 0.1858 0.0551* 

Spain 0.4132 0.2935 0.3938 0.3774 0.2698 0.0000** 0.3466 

Sweden 0.0002** 0.0012** 0.1106 0.2152 0.0000** 0.1247 0.0012** 

United 

Kingdom 
0.0163** 0.0396** 0.3758 0.0564* 0.0158** 0.0306** 0.0582* 

Note: Table entries are p-values. *(**) denote significance at the 10%(5%) level.  

A mere glance at Table 1 reveals that ICI (as the corresponding sectoral BCS indicator) 

predicts industrial production with a two months lead in as many as 19 (out of 28) analyzed 

countries.   Therefore, quantifying a better leading indicator than ICI seems to be a rather hard 

task. However, ind_irr provides even better results, revealing 21 significant cases of Granger 

causality. Apart from ind_irr as the relative winner of this empirical comparison, another 

noteworthy result is generated by ind_adapt, Granger-causing industrial production in 
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respectable 15 countries. Calculating ICI according to the weighted balance approach 

(Claveria 2010) results in respectable 14 cases of significant Granger causality. The other 

three approaches (ind_sup, ind_dis, and ind_adapt12) do not produce noteworthy results.  

 Table 2. Results of Granger non-causality test for heterogeneous panel (consumer sector) 

  CCI CCI_WB cons_sup cons_dis cons_irr cons_adapt cons_adapt12 

Homogenous Non-Causality (HNC) vs HEterogeneous Non-Causality (HENC) hypothesis  

Z  (p-value) 0.0006 0.0000 0.7127 0.0006 0.0000 0.0000 0.0120 

Z  (p-value) 0.0014 0.0000 0.8053 0.0014 0.0000 0.0000 0.0192 

lags 2 1 2 1 1 1 1 

Austria 0.384 0.2106 0.3494 0.384 0.6449 0.411 0.233 

Belgium 0.7219 0.3997 0.9776 0.7219 0.5926 0.3911 0.1624 

Bulgaria 0.604 0.1853 0.9022 0.604 0.5431 0.6534 0.8996 

Croatia 0.4094 0.5927 0.9397 0.4094 0.2752 0.2184 0.7131 

Cyprus  - -  -  -  -  -  -  

Czechia 0.5796 0.83 0.5431 0.5796 0.2076 0.1701 0.4196 

Denmark 0.0185** 0.013** 0.0659* 0.0185** 0.0074** 0.0837* 0.1425 

Estonia 0.3867 0.2656 0.4991 0.3867 0.0403** 0.0351** 0.1119 

Finland 0.0166** 0.0001** 0.6772 0.0166** 0.0087** 0.023** 0.3394 

France 0.1882 0.4113 0.1925 0.1882 0.0346** 0.1254 0.0322** 

Germany  0.3879 0.8103 0.9257 0.3879 0.0902* 0.0165** 0.7599 

Greece 0.0659* 0.1812 0.1376 0.0659* 0.515 0.221 0.4487 

Hungary 0.2599 0.1367 0.3278 0.2599 0.0014** 0.1232 0.1589 

Ireland 0.7337 0.3698 0.243 0.7337 0.85 0.0909* 0.4256 

Italy 0.0837* 0.7561 0.5147 0.0837* 0.5508 0.0385** 0.3944 

Latvia 0.7615 0.3912 0.9966 0.7615 0.4329 0.5037 0.8896 

Lithuania 0.0103** 0.1235 0.3584 0.0103** 0.0158** 0.0033** 0.0612* 

Luxembourg 0.2086 0.8664 0.2782 0.2086 0.9056 0.9901 0.4074 

Malta 0.6381 0.6539 0.9834 0.6381 0.3122 0.1966 0.8813 

Netherlands 0.6718 0.5411 0.2864 0.6718 0.9494 0.0168** 0.4724 

Poland 0.0491** 0.1726 0.4079 0.0491** 0.947 0.655 0.7102 

Portugal 0.2281 0.4329 0.6735 0.2281 0.1042 0.0655* 0.4264 

Romania 0.5275 0.001** 0.9369 0.5275 0.3229 0.0192** 0.0094** 

Slovakia -  -  -  -  -  -  -  

Slovenia 0.7074 0.1798 0.4289 0.7074 0.6869 0.3016 0.9852 

Spain 0.0053** 0.0767* 0.0258** 0.0053** 0.0051** 0.0266** 0.0572* 

Sweden 0.4772 0.4438 0.8681 0.4772 0.2046 0.3668 0.8765 

United 

Kingdom 
0.1881 0.0684* 0.0066** 0.1881 0.0295** 0.0009** 0.0037** 

Note: Table entries are p-values. *(**) denote significance at the 10%(5%) level. Private consumption data 

for Cyprus and Slovakia is unavailable. 
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Table 2 reveals that cons_adapt and cons_irr dominate over all other considered indicators, 

even the standard CCI. As opposed to the industrial sector (Table 1), this time the adaptive 

expectations indicator (cons_adapt) performs the best. 

Table 3. Results of Granger non-causality test for heterogeneous panel (retail sector) 

  RTCI RTCI_WB ret_sup ret_dis ret_irr ret_adapt ret_adapt12 

Homogenous Non-Causality (HNC) vs HEterogeneous Non-Causality (HENC) hypothesis 

Z  (p-value) 0.2274 0.0000 0.2975 0.0004 0.0000 0.0000 0.9002 

Z  (p-value) 0.3294 0.0000 0.3511 0.0008 0.0000 0.0000 0.8472 

lags 1 1 1 1 1 1 1 

Austria 0.6042 0.5249 0.4019 0.0584* 0.3708 0.1837 0.614 

Belgium 0.8996 0.3389 0.6344 0.2365 0.5403 0.5915 0.7316 

Bulgaria 0.8462 0.3037 0.0173** 0.6524 0.7368 0.8975 0.3439 

Croatia 0.3683 0.9155 0.9074 0.7017 0.3615 0.3114 0.9704 

Cyprus  - -  -  -  -  -  -  

Czechia 0.5838 0.0442** 0.4548 0.4753 0.3339 0.0008** 0.4669 

Denmark 0.2265 0.0712* 0.3351 0.6535 0.0629* 0.9672 0.9690 

Estonia 0.0236** 0.0268** 0.3830 0.0537* 0.0019** 0.0012** 0.3031 

Finland 0.9089 0.7439 0.554 0.3074 0.6454 0.0007** 0.4952 

France 0.1686 0.6736 0.1574 0.7309 0.2398 0.0266** 0.1572 

Germany  0.9119 0.5828 0.0642* 0.0622* 0.1266 0.0114** 0.4472 

Greece 0.5943 0.0308** 0.2703 0.6409 0.3706 0.8036 0.1642 

Hungary 0.0993* 0.2180 0.7757 0.0010** 0.0502* 0.7401 0.5246 

Ireland 0.5961 0.1282 0.7070 0.7340 0.8885 0.0583* 0.5259 

Italy 0.0470** 0.0590* 0.2130 0.2764 0.0910* 0.0233** 0.1411 

Latvia 0.6347 0.4534 0.8106 0.7885 0.6175 0.0002** 0.6522 

Lithuania 0.0949* 0.0041** 0.0675* 0.7760 0.0022** 0.0063** 0.0112** 

Luxembourg -  -  -  -  -  -  -  

Malta 0.0682* 0.0149** 0.1708 0.4098 0.0035** 0.2486 0.2747 

Netherlands 0.9039 0.0994* 0.6708 0.1038 0.4271 0.0000** 0.6826 

Poland 0.6092 0.8959 0.9508 0.1639 0.3936 0.0351** 0.5939 

Portugal 0.1147 0.7372 0.1562 0.0334** 0.0422** 0.002** 0.0863* 

Romania 0.5684 0.9468 0.1009 0.1279 0.8039 0.1372 0.6302 

Slovakia  - -  -  -  -  -  -  

Slovenia 0.9389 0.9416 0.3650 0.5064 0.9254 0.0932* 0.3859 

Spain 0.0302** 0.0014** 0.1748 0.0042** 0.0300** 0.6927 0.5780 

Sweden 0.5812 0.5247 0.2929 0.7252 0.8149 0.0004** 0.7588 

United 

Kingdom 
0.6899 0.5693 0.7310 0.8754 0.6571 0.3632 0.6916 

Note: Table entries are p-values. *(**) denote significance at the 10%(5%) level. Private consumption data 

for Cyprus and Slovakia is unavailable, just as the BCS retail sector data for Luxembourg. 
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Table 3 paints a very similar picture. The adaptive expectations indicator (ret_adapt) has 14 

significant cases of Granger causality, while RTCI as the standard sectoral BCS indicator has 

only seven of them. Indicator ret_irr also works rather well, just as the weighted balance 

approach (RTCI_WB). 

Comparing the results of Tables 1-3, it becomes evident that psychological factors are far 

more relevant in the industrial sector than in the consumer and retail trade sectors. Indicators 

ind_irr, ICI, and ind_adapt Granger-cause industrial production in a vast majority of 

countries, while none of the examined indicators in the consumer and retail trade sector are 

found to be significant drivers of economic activity in more than half of the analyzed 

countries. Private consumption is obviously substantially less psychologically driven than the 

industrial production, where expectations and uncertainty play a pivotal role in planning and 

executing future business endeavors. This brings us back to the premise of Katona (1960), 

who made a clear distinction between the ability to consume and willingness to consume.3 

Our results implicitly confirm the dominance of the former factor in comparison to the latter 

one.  

Tables 1-3 vigorously demonstrate that the irrational component of economic sentiment 

(ind_irr, cons_irr, and ret_irr) is mostly a more important driver of economic activity than 

respective confidence indicators (ICI, CCI, and RTCI). One would usually compare the 

hereby obtained results to the ones of previous studies. However, although the irrational 

component of economic sentiment is a well-established driver of financial markets (Lagunoff 

and Schreft 1999; Baker and Wurgler 2006; Verma et al. 2008; Schmeling 2009; Das et al. 

2020) and housing markets (Das et al. 2020), to the best of our knowledge, the literature is 

completely silent on the role of irrational sentiment in governing aggregate economic activity 

in particular areas such as the manufacturing industry, consumer, or retail sector. Our results 

clearly highlight this as a very promising direction for future research.  

Some additional insights could be drawn here from a cross-country comparison of the results 

obtained in Tables 1-3. Looking at the significant cases of Granger causality with respect only 

to the irrational sentiment indicators, one might notice the repeating list of countries across 

the observed sectors. Namely, economic activity in Estonia and Denmark is driven by 

irrational sentiment in all three sectors, whereas a fair share of countries records significant 

irrational sentiment indicators in two out of three sectors (Finland, France, Germany, 

                                                                        

3 See e.g. Roos (2008) for an empirical re-appraisal of Katonian consumption theory on BCS data.  
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Hungary, Italy, Lithuania, Portugal, Spain, UK). It is to assume that economic agents’ 

decision making in the referred countries is in general guided by different forms of non-

rational reasoning. 

The foundation behind this irrational conduct might be found in the traumatic experience of 

the Great Recession. According to Eurostat data, Estonia, Lithuania, Finland, and Italy were 

among the six EU countries with the sharpest initial (2008-2009) general economic downfall, 

while many peripheral EU countries generally experienced severe economic struggle (e.g. 

Portugal and Spain). Dealing with the most acute economic distress in 2009, Estonia and 

Lithuania experienced nearly a 15% GDP decline.  

Furthermore, Estonian public debt to GDP ratio almost doubled between 2007 and 2009, 

while other EU countries also started to face high public debt growth rates as the financial 

crisis began to turn into a debt crisis. Between 2008 and 2013 public debt grew at an average 

annual rate higher than 17% in Estonia and Spain, 16% in Lithuania4 and 13% in the UK. On 

the other hand, a serious cause for concern stemmed from the high levels of public 

indebtedness. Not just during the crisis, but even in the whole observed period (2000-2019), 

the average public debt to GDP ratio accounted for almost 120% in Italy, 100% in Portugal 

and 80% in France, pointing to unsustainable debt accumulation. 

Extreme GDP declines, followed by a sovereign debt crisis, called for an unconventional 

crisis management based on harsh austerity measures. Taking again Estonia for example, 

Peters et al. (2011) described their hard austerity process which included internal devaluation, 

VAT increase and dismissal and retraining of public employees. Although Estonia succeeded 

in gaining greater efficiency and public savings quite fast, a question arises was it worth the 

price in terms of effects on people’s lives, attitudes and general welfare. As the most severe 

and unpredicted event in the past two decades (which is the used time span for most of our 

variables), the Great Recession generated not solely economic, but also psychological 

consequences long-rooted in people’s minds. 

A similar conclusion can be drawn for the adaptive expectations algorithm. Indicators 

ind_adapt, cons_adapt, and ret_adapt seem to successfully predict their corresponding 

reference macro series. Although the concept of adaptive expectations has been thoroughly 

examined and proven credible e.g. in the case of inflation expectations (Pfajfar and Santoro 

                                                                        

4 In Lithuania, public debt to GDP ratio was higher by as much as 145% in 2013 compared to 2007. 
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2010; Sorić, et al. 2020), no serious attempt has been made to scrutinize its relevance in 

governing the real economy. 

The results presented in Tables 1-3 do not tell the full story behind the functioning 

mechanisms of economic sentiment and the way it influences aggregate activity. Namely, one 

should certainly scrutinize the sign and magnitude of its effect, along with the intertemporal 

dynamics between BCS indicators and the chosen reference series. To provide an insight into 

the stated phenomena, we continue by estimating a standard panel VAR model with the same 

number of lags as in the corresponding Granger causality test for heterogeneous panels 

(chosen according to the BIC criterion). The obtained impulse response functions (IRFs) to 

one standard deviation shocks are presented in Figures 1-3. We treat this model as a 

robustness check.  

IRFs for the manufacturing industry sector (Fig. 1) follow an unsurprising and relatively 

similar pattern for most of the observed sentiment indicators. As expected, a unit shock in all 

BCS indicators except ind_dis increases industrial production in the initial period. The 

increase is rather sharp, after which it declines and fades away to zero relatively fast. The only 

exception is the insignificant disagreement indicator, which is in line with the results from 

Table 1. ICI and ind_irr have the greatest magnitude of the initial effect on the industrial 

production, unsurprisingly, as they turned out to be the relative winners according to the 

heterogeneous Granger causality test results. 

The story behind the consumer and retail trade sectors (Fig. 2-3) is somewhat different. A 

standard deviation shock in consumer and retail trade sentiment indicators results in a 

personal consumption increase, except for the case of disagreement, surprise and adaptive 

(adapt_cons12 and adap_ret12) expectations indicators in both sectors. Impulse response 

function patterns for other BCS indicators resemble each other but are not similar to the ones 

observed in the manufacturing industry sector. In fact, the positive effect of higher consumer 

and retail trade managers’ sentiment stays positive much longer and diminishes into the 

steady-state very slowly. This might be on a trace of one of Katona’s (1975) key principles 

underlining the slow nature of agents’ learning process, which in turn could make the here 

observed effects more permanent. Namely, newly gained beliefs and subsequent people’s 

reactions require mutual boost and information exchange among peers, meaning that a mass 

response could happen even after several periods (Garner 1981).  
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Fig. 1. Impulse response functions of dind to a shock in BCS indicator 
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Fig. 2. Impulse response functions of dcons to a shock in BCS indicator (consumer sector) 
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Fig. 3. Impulse response functions of dcons to a shock in BCS indicator (retail sector) 
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Finally, as the last robustness check, we perform a conventional Granger causality test in the 

panel VAR model of form (15). The results are presented in Table 4. Again, for all three 

considered sectors, the results firmly disapprove of the leading characteristics of agents’ 

disagreement. Surprise index and the adaptive expectations with a 12-month lag also do not 

work well in most cases, while the other examined variables seem to have pronounced leading 

characteristics.  

 

Table 4. VAR Granger causality test 

BCS indicator Granger causes 

dind 

BCS indicator Granger 

causes dcons 

BCS indicator Granger 

causes dcons 

BCS indicator p-value BCS indicator p-value BCS indicator p-value 

ICI 0.0000 CCI 0.0000 RTCI 0.0226 

ICI_WB 0.0000 CCI_WB 0.0186 RTCI_WB 0.0002 

ind_sup 0.0000 cons_sup 0.227 ret_sup 0.7634 

ind_dis 0.9844 cons_dis 0.7809 ret_dis 0.6293 

ind_irr 0.0000 cons_irr 0.0029 ret_irr 0.0005 

ind_adapt 0.0000 cons_adapt 0.0000 ret_adapt 0.0000 

ind_adapt12 0.0000 cons_adapt12 0.7531 ret_adapt12 0.1274 

 

Reflecting on these results, one should certainly avoid the misperception that the generating 

process of economic agents’ sentiment can be boiled down to strictly one of the assessed 

theoretical models (rational expectations vs. adaptive expectations, or e.g. complete 

irrationality). The human nature is inherently a mixture of all examined concepts. On 

occasion, economic agents are firmly irrational (e.g. when faced with the circumstances of 

uncertainty and high economic volatility). Sometimes they are strictly rational in the sense of 

incorporating all relevant information in the decision-making process and producing unbiased 

predictions of targeted economic variables. This is perhaps possible in the case of consistent 

formal policy announcements (Bernoth and von Hagen 2004) and in stable economic 

surroundings (Sorić et al. 2020). Our argumentation on the interchangeable expectation 

generation processes (depending on the prevailing economic conditions) should certainly be 

brought in relation to Pfajfar and Santoro (2010), who identify specific regions of underlying 

formation mechanisms in the case of inflation expectations. To be specific, they identify a 

nearly rational region around the median of the distribution, a highly irrational region with 

systematic forecasting errors in the left tail of the distribution, and an adaptive learning region 

in its right tail.   
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5. Conclusion 

BCS indicators have become an indispensable tool for short-term macroeconomic forecasting, 

providing soft information complemental to hard economic data. These kinds of 

psychological indicators are proven to be of particular importance in times of economic crisis 

and turmoil (Sorić 2018). Given the recent global financial crisis, followed by high 

uncertainty episodes of the European sovereign debt crisis, Brexit, USA-China trade war, and 

the COVID-19 pandemic, it comes as no surprise that the prognostic performance of BCS 

measures has recently been thoroughly examined by several studies. Even more important, 

some attempts of methodological improvements of standard BCS indicators have recently 

been introduced in the literature. We add to this specific literature branch by examining a 

wide variety of tendency survey indicators, as well as by suggesting six methodological 

alternations and novel concepts of measuring economic expectations. The leading properties 

of all six examined indicators are then tested in the framework of a heterogeneous panel 

Granger causality test, which has good finite sample properties even in the case of cross-

sectional dependence. Additionally, we also estimate panel VAR models to scrutinize the 

robustness of our results.  

We build upon the literature strand on the irrational sentiment, i.e. the component of 

economic sentiment that is not derived from economic fundamentals. In that sense, we follow 

the approach of Baker and Wurgler (2006) and Corredor and Santamaria (2015), finding that 

this type of indicator considerably outperforms classical BCS barometers. Irrational sentiment 

Granger-causes economic activity in the huge majority of analyzed countries in the industrial 

sector, and it also produces promising results in the consumer and retail trade sectors. Further 

on, we add to the literature by examining an expectations indicator derived on the premise of 

adaptive expectations, which have insofar been almost completely neglected in BCS research. 

The obtained results again seem quite promising. As opposed to irrational sentiment, this type 

of indicator has the most pronounced predictive properties in the consumer and retail trade 

sector. Additionally, we build upon the surprise index approach (Scotti 2016) and apply it to 

BCS data for the first time. This method does not bring any added value in comparison to 

standard BCS indicators. Similar conclusions are also drawn for the measure of agents’ 

disagreement (Claveria, Monte and Torra 2019b), while the weighted balance approach 

(Claveria 2010) performs rather well, especially in the retail trade sector. 
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To summarize, irrational sentiment and adaptive expectations provide the widest scope of 

significant Granger causality amongst European countries. As they seem to capture the erratic 

human nature rather well, we strongly encourage further research efforts focused on these two 

classes of BCS indicators.  
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Appendix 

Table 5. Time spans of the observed dataset 

 
Macroeconomic data BCS data 

Country ind cons Industry Consumers Retail trade 

Austria 
2000M01-

2020M06 

1996Q1-

2020Q2 

2000M01-

2020M06 

1995Q4-

2020Q2 

1996Q1-

2020Q2 

Belgium 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1995Q1-

2020Q2 

Bulgaria 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

2001Q2-

2020Q2 

1995Q1-

2020Q2 

Croatia 
2000M01-

2020M06 

1995Q1-

2020Q2 

2008M05-

2020M06 

2005Q2-

2020Q2 

2008Q4-

2020Q2 

Cyprus 
2000M01-

2020M06 
- 

2001M01-

2020M06 

2001Q2-

2020Q2 

2002Q2-

2020Q2 

Czechia 
2000M01-

2020M06 

1996Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1995Q1-

2020Q2 

Denmark 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

2010Q2-

2020Q2 

Estonia 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1995Q1-

2020Q2 

Finland 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q4-

2020Q2 

1997Q1-

2020Q2 

France 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1995Q1-

2020Q2 

Germany 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1995Q1-

2020Q2 

Greece 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1995Q1-

2020Q2 

Hungary 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1996Q1-

2020Q2 

Ireland 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1997Q4-

2020Q2 

Italy 
2000M01-

2020M06 

1996Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1995Q1-

2020Q2 

Latvia 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

2001Q2-

2020Q2 

1996Q1-

2020Q2 

Lithuania 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

2001Q2-

2020Q2 

1995Q2-

2020Q2 

Luxembourg 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

2002Q1-

2020Q2 
- 

Malta 
2000M01-

2020M06 

2000Q1-

2020Q2 

2002M11-

2020M06 

2002Q4-

2020Q2 

2011Q2-

2020Q2 

Netherlands 
2000M01-

2020M06 

1996Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1995Q1-

2020Q2 

Poland 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

2001Q2-

2020Q2 

1995Q1-

2020Q2 

Portugal 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1995Q1-

2020Q2 

Romania 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

2001Q2-

2020Q2 

1995Q1-

2020Q2 

Slovakia 
2000M01-

2020M06 
- 

2000M01-

2020M06 

1999Q2-

2020Q2 

1995Q1-

2020Q2 

Slovenia 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1996Q1-

2020Q2 

1999Q1-

2020Q2 

Spain 
2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1995Q1-

2020Q2 

Sweden 2000M01- 1995Q1- 2000M01- 1995Q4- 1996Q3-
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2020M06 2020Q2 2020M06 2020Q2 2020Q2 

United 

Kingdom 

2000M01-

2020M06 

1995Q1-

2020Q2 

2000M01-

2020M06 

1995Q1-

2020Q2 

1995Q1-

2020Q2 

 

 
 


