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Abstract 

 

This paper presents a new, non-calculus approach to solving the utility maximization problem with 

CES utility function, as well as with Cobb-Douglas utility function in case of n≥2 commodities. 

Instead of using the Lagrange multiplier method or some other method based on differential calculus, 

these two maximization problems are solved by using Jensen's inequlity and weighted arithmetic-

geometric mean (weighted AM-GM) inequality. In comparison with calculus methods, this approach 

does not require checking the first and the second order conditions. 
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1. INTRODUCTION 

 

In the last thirty years mathematical inequalities have been applied to various economic problems. In 

praticular, mathematical inequalities such as arithmetic-geometric mean inequality and Cauchy-

Buniakowsky-Schwarz inequality, have benn used to solve many optimization problems in the field of 

inventory theory (see [2], [3], [8]). A good review of papers that deal with applications of 

mathematical inequalities to inventory theory models can be found in [3]. The most significant 

contribution of these papers is reflected in the fact that some important optimization problems in 

economics which cannot be trivially solved by using methods based on calculus are solved in a way 

much easier to understand, thus providing better insight into the nature of the problem. In this paper 

we consider two standard and very important microeconomic problems: the utility maximization 

problem with CES utility function and the utility maximization problem with Cobb-Douglas utility 

function. These two problems are usually solved by using differential calculus. However, standard 

microeconomic textbooks show solution only in the case of n=2 commodities (see for instance [5] and 

[7]). Therefore, the aim of this paper is to show how to solve these problems in an easier manner via 

mathematical inequalities for arbitrary n≥2. In this paper we use the following mathematical 

inequalities. 

 

Theorem 1. (Jensen's inequality) Let n be a positive integer. If f is a convex function on [a, b], then 

for any choice of t1,…,tn  [0, 1] such that 
1

1
n

i

i

t


 , and for all x1,…,xn  [a, b] the inequality  

      1 1 1 1n n n nf t x t x t f x t f x     (1)  

holds. The equality in (1) holds if and only if x1=…=xn. Note: if f is concave function, then in (1) 

reverse inequality holds. 

Theorem 2. (Weighted AM-GM inequality) Let n be a positive integer. If x1,…,xn and t1,…,tn are 

positive numbers such that 
1

1
n

i

i

t


 , then 

 1

1 1 1
ntt

n n nx x t x t x  . (2)  

The equality in (2) holds if and only if x1=…=xn. 

Proofs of the previous theorems can be found, for instance, in [1] or [4]. 

 

2. CASE n=2 

 

The consumer utility maximization problem can be stated as 

  
1

1
,..., 0
max ,...,

n

n
x x

u x x


 (3) 

 
1

s. t.
n

i i

i

p x y


  (4)  

 where n is a positive integer and represents the number of commodities that consumer buys, xi≥0 is 

the quantity of commodity i, pi>0 is the price per unit of commodity i, y>0 is a consumer’s fixed 

money income and u is a strictly increasing and strictly quasiconcave utility function. If u is the CES 

utility function, then in case of n=2 commodities the problem (3)-(4) becomes the utility  

maximization problem with CES utility function (5)-(6):  

    
1 2

1

1 2 1 1 2 2
, 0

max ,CES

x x
u x x A x x   


    (5) 

 
1 1 2 2s. t. p x p x y   (6)  
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where  ,1 \ 0  , coefficients 
1 20 , 1   describe consumer preferences and A>0 is the scale 

of production. Similarly, if u is the Cobb-Douglas utility function, then in case of n=2 problem (3)-(4) 

becomes the utility maximization problem with Cobb-Douglas utility function (7)-(8): 

   1 2

1 2

1 2 1 2
, 0

max ,C D

x x
u x x Ax x

 


  (7) 

 
1 1 2 2s. t. p x p x y  .  (8) 

Theorem 3. The maximum utility in problem (5)-(6) is equal to  

 

1
1 1 1 1

1 1 1 1

max 1 1 2 2

CESu Ay p p




    



   
 

  
 
 

 (9) 

and it is achieved for the unique global maximizer  *, *,

1 2,CES CESx x  where  

 *,

1

2 1

1

, 1,2.CES

k

i k
i

i k i

y
x k

p
p

p









 

 
 

 


  (10)  

Proof. We proceed as in [6]. From (6) we get  

 1
2 1

2 2

y p
x x

p p
  .  (11)  

Substituting (11) in (5), we transform the problem (5)-(6) into an unconstrained maximization problem 

  
1

1

1 1
1 1 1 2

0
2 2

max ,
CES

x

y p x
u x A x

p p

 

 


  
    
   

  (12) 

where 
CES

u  is a function of one variable. Let 1 2

1
0, ,

1 1
t t




 
  

 
. Note that 0<t1, t2<1, t1+t2=1. 

Note that function 
CES

u  from (12) can equivalently be written as  

 

     

 

1

2 1
1 1 1 1 2 1

2 2

1

1
1

1
2 1

1 1 1 1

2 2

1 1

1 .

CES y p
u x A t x t x

p p

y p
A t x x

p p

 



 





  




 



  
      
   

                           

  (13) 

Let us consider functions    
1

, : 0, IR, ,f g f x x g x x     . It is trivial to show that if 

,0  , then f is convex and g is decreasing. If 0,1 , then f is concave and g is increasing. If 

we combine these facts with Theorem 1, then from (13) it follows  

    

1
1

1
2 1

1 1 1 1 2 1

2 2

1 .
CES y p

u x A t x t x
p p





 



 
            

 

  (14) 

The equality in (14) holds if and only if 

1
1

2 1
1 1 1 2 1

2

0
p

t x t x
p


 




 
  

 
for all x1. This is possible if and 

only if  

 

11
1

2 1 1 2 1
1 1 2

2 2 1 2

p t p
t t

p t p


  


 

  
     

   
. (15) 
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Since t1+t2=1 and 1

2

1t

t 
 , from (15) we obtain  

 

1

1
2 1

1 2

,
p

p



 




   
    
   

  (16) 

 

1

1 1
2 1

1 2

1 21 1

1 1 1 1
2 1 2 1

1 2 1 2

1
, .

1 1

p

p
t t

p p

p p



 

 

   





 

 

 

   

   
   
    

       
        
       

  (17) 

If we substitute (16) and (17) into (14), we obtain the maximum level of utility in case of CES utility 

function max

CES

u , that is  

 

1
1 1

1 1 1 1

max 1 1 2 2 .CESu Ay p p


  

    



   
 

  
 
 

  (18) 

We still need to obtain the unique level of commodity quantities x1 and x2 for which the global 

maximum is obtained. By applying Theorem 1 to (11), we obtain that the maximum utility level (18) 

is achieved if and only if  

 

1
1

2 1
1 1 1

2 2

.
y p

x x
p p


 




  
   
   

  (19) 

Now, from (11), (16), (17) and (19), the unique global maximizer  *, *,

1 2,CES CESx x  for the problem (5)-

(6) can be easily obtained as 

 *,

1

2 1

1

, 1,2.CES

k

i k
i

i k i

y
x k

p
p

p









 

 
 

 


  (20) 

The results (18) and (20) have the same form as in [5]. Q.E.D.      

 

Theorem 4. The maximum utility in problem (7)-(8) is equal to  

 
 

1 2 1 2

1 2 1 2

1 2
max

1 2 1 2

C D A y
u

p p

   

   

 

 








, (21) 

and it is achieved for the unique global maximizer  *, *,

1 2,C D C Dx x   where  

 
 

*,

1 2

, 1,2.C D k
k

k

y
x k

p



 

  


  (22)  

Proof. By substituting (11) in (7), we obtain the unconstrained maximization problem 

  
2

1

1

1
1 1 1

0
2 2

max
C D

x

y p
u x Ax x

p p







 
  

 
. (23) 

Let us transform (23) in the following way: 
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   

   

   

1 2
1 1 2

2

1 2
1 2

2

1 2
1 2

1 2

1 2 1 2
1 2 1 2

1 2

1 22 1 1 2

1 2 1 2
1 2

1 1 1 1

2

2 2 1 1 1 1 1 1 1

1 2

1 2
2 1 1 1 1 1 1

1 2

.

C D A
u x x y p x

p

A
p x y p x

p p

A p x y p x
p p

   
 

 


  
 

   
   

 

    

   
 

    

 
  




 



 

 
 

 

 

   
        

 
  

 
 

 
  

 

  (24) 

Since 1 2

1 2 1 2

1
 

   
 

 
, by applying Theorem 2 to (24), we obtain  

 

 

 

2 1

1 2

1 2 1 2

1 2 1 2

1 2 1 2 2
1 2 1 1 1 1 1 1

1 2 1 2 1 2 1 2

1 2

1 21 2

.

C D

u x A p x y p x
p p

y
A

p p

 

 

   

   

    
  

     

 

 

 






 
   

   

 


  (25) 

Thus, by Theorem 2, the maximum utility level is equal to 

 
 

1 2 1 2

1 2 1 2

1 2
max

1 2 1 2

C D A y
u

p p

   

   

 

 








  (26) 

and it is achieved if and only if  

 
2 1 1 1 1 1 1p x y p x    .  (27)  

From (27) we get the unique optimal quantities of commodities 1 and 2, i.e. the unique global 

maximizer  *, *,

1 2,C D C Dx x  , where  

 
   

*, *,1 2
1 2

1 1 2 2 1 2

,C D C Dy y
x x

p p

 

   

  
 

. (28) 

Q.E.D. 

One of the common assumption in economics is that utility function needs to be quasiconcave. In 

order for the Cobb-Douglas function to meet this condition, coefficients 
1 2, 0    have to satisfy the  

condition 
1 2 1   . If  

1 2 1   , that is if the Cobb-Douglas function exhibit constant returns to 

scale, then (26) and (28) can be simplified as 

 

1 2

*, *,1 2 1 2
max 1 2

1 2 1 2

, ,C D C D C Dy y
u Ay x x

p p p p

 

        
     

   
. (29)  

Results (9), (10) and (29) are already known in contemporary microeconomic literature. However, to 

the best of my knowledge, this is the first time that these results are derived by using mathematical 

inequalities. 

In the next section, the results are generalized for the case of n>2 commodities. To the best of my 

knowledge, the results obtained for the general case are unknown in contemporary economic and 

mathematical literature. 

 

3. GENERAL CASE n>2 

 

We consider the following utility maximization problem in case of CES utility function for n>2: 

    
1

1

1 1 1
,..., 0
max ,...,

n

CES

n n n
x x

u x x A x x   


     (30) 

 
1 1s. t. n np x p x y   . (31) 

Theorem 5. The maximum level of utility in problem (30)-(31) is equal to  
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1
1

1 1

max

1

n
CES

i i

i

u Ay p


 

 



 



 
  

 
 
   (32) 

and it is achieved for the unique global maximizer  *, *,

1 , ,CES CES

nx x , where  

 *,

1

1

1

, 1,2,..., .CES

k

n
i k

i

i k i

y
x k n

p
p

p









 

 
 

 


  (33) 

Proof. We prove the theorem by using mathematical  induction over the number of commodities n≥2. 

(i) The claim of Theorem 5 holds for n=2, as shown in Theorem 3. 

(ii) Assume that the claim of Theorem 5 holds for k=2, 3, …, n. 

(iii) Let us prove that the claim of Theorem 5 holds for k=n+1. 

Consider the following utility maximization problem 

    
1 1

1

1 1 1 1 1 1
,..., 0
max ,...,

n

CES

n n n
x x

u x x A x x   


  


    (34) 

 
1 1 1 1s. t. n np x p x y    .  (35) 

From (35) we obtain  

 1
1 1

1 1 1

n
n n

n n n

y p p
x x x

p p p


  

     . (36) 

Substituting (36) into (35) we obtain 

  

1

1 1 1 1 1

1 1

,
nCES n

n n n n n

n n

x p
u x x A x x x

p p

 

    

 

  
     
   

  (37) 

where 1 1 1 1n n nx y p x p x     . By the same reasoning as when obtaining (12) and (18), we apply 

the claim (i) to terms n nx  and 1

1 1

n n
n n

n n

x p
x

p p



 

 

 
 

 
 from (37) and thus obtain 

 
 

 

1
1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

1

1 1 1 1

, ,

,

CES
nn n n n n n n

n nn n

u x x A x x x p p

A x x x

  
     

  

   

  



   

    

 

  
      

    

   

  (38) 

where 

1
1 1

1 1 1 1

1 1n n n n np p

 

     



   

 

 
  
 
 

. Note that maximizing the expression on the left hand side of 

(38) is equivalent to the following problem: 

    
1 1

1

1 1 1 1 1 1
,..., , 0
max ,..., ,

nn

CES
n n nn n n

x x x
u x x x A x x x

    


  


      (39) 

 1 1 1 1. . ... 1 nn ns t p x p x x y      .  (40)  

By applying claim (ii) to (39)-(40), from (38) we get  

 

 

1
1 11

1 1 11

1 1

1

1
11

1 1

1

,..., , 1

.

n
CES

nn n i i

i

n

i i

i

u x x x Ay p

Ay p


  

  


 

 

 






  








 



 
   

 
 

 
  

 
 





  (41) 

Now, the equality in (38) is achieved if and only if  
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 11 1

1 1
1 1

1 1

1 1

,
n n

n n

n n n n
n n n n

n n n n

x x
x x

p p
p p p p

p p

  

 



 
 

 

 

 

   
      

   

 .  (42) 

Furthermore, equality in (41) is achieved if and only if  

 
1 1

1 11 1
1 1

1
1

1
1

l

n
n i l

i l l l
l i l i

ni l i l

y y
x

p
p p

p p
p p

 
 

 


 

 
 




 

 
          

   



,  (43)  

where l=1,2,…,n-1. For l=n we have 

 

1 1

1 1 1 1

1 1

1 1
1 111 1 1

1 1 1 1

1 1

11

1
1

n n n n
n

nn
n ii

i n n n ni

ii ii

y p p
x y

pp
p p pp

 

   

 
 

   

 


 



   

 

  
   

 




  

   
    

   


.  (44)  

Combining (42) and (44) we get  

 
11 1

1 11 1
1

1 1 1

,n n

n n
i n i n

i i

i in i n i

y y
x x

p p
p p

p p

  

 



  


  

 

   
   
   

 

 .  (45) 

Since (41), (43) and (45) prove the claim (iii), Theorem 5 is completely proved. Q.E.D. 

Let us now consider the utility maximization problem in case of Cobb-Douglas utility function for 

n>2: 

   1

1

1 1
,..., 0
max ,..., n

n

C D

n n
x x

u x x Ax x



 ,   (46) 

 
1 1s. t. n np x p x y   . (47)  

Theorem 6. The maximum utility in problem (46)-(47) is equal to  

 

1

max

1

1

n

i

i

in
C D i

n
i i

i

i

y
u A

p


















 
   
   
   
 
 




 ,  (48) 

and it is achieved for the unique global maximizer  *, *,

1 , ,C D C D

nx x  , where  

 *,

1

, 1,2,..., .C D k
k n

k i

i

y
x k n

p









 


  (49) 

Note: If 
1

1
n

i

i




 , then (48) and (49) can be written in a simplified form as 

 max

1

in
C D i

i i

u Ay
p







 
  

 
 ,  (50) 

 
*, , 1,2,..., .C D k
k

k

y
x k n

p

     (51) 

Proof. By mathematical induction over n≥2. The idea is the same as in the proof of Theorem 5, where 

the claim (i) holds as shown in Theorem 4. Q.E.D. 

 

Remark 1. If 
1

1
n

i

i




 , then Cobb-Douglas utility function is a limit of CES utility function as ρ 

approaches to zero, i.e.  
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1

0
1 1

lim i

nn

i i i

i i

A x A x








 

 
 

 
  . (52)  

Proof. Let 

 

1

0
1

lim
n

i i

i

L x










 
  

 
  . (53) 

By taking logarithm of (53) and by using the L’Hospital rule, we get 

 
'

1 1 1

0 0
1

1 1

ln ln ln
0

ln lim lim ln
0

i

n n n

i i i i i i i nL H
i i i

in n

i
i i i

i i

x x x x

L x

x

 



 


  


 

  

 


 

 
 

       
 

  


 
 .  (54) 

Thus, 
1

i

n

i

i

L x




 which proves Remark 1. Q.E.D.  

 

Remark 2. If 
1

1
n

i

i




 , then (50) is a limit of (32) as ρ approaches to zero, i.e. 

 

1
1

1 1

0
1 1

lim

inn
i

i i

i i i

Ay p Ay
p


 

 








 


 

   
    

  
  .  (55)  

Proof. It is sufficient to prove that 

 

1
1

1 1

0
1 1

lim

inn
i

i i

i i i

L p
p


 

 








 


 

   
     

  
   .  (56) 

By taking logarithm and by using L’Hospital rule, we get 

 

 

 

1 1

1 1 1 1

2
'1 1

10 0
1 1

2
1

1

1 1

1

1
ln ln

10
ln lim lim

0 1
1

1

ln

ln ln .

i i

n n
i

i i i i
L Hi i i

n

i i

i

n
i

i nn
i i i i

n
i ii i

i

i

p p
p

L

p

p

p p

 

   

 
 

 


 











 



   

 

 
 





 



   
            

  
     

 
 

         
   

 




 



  (57) 

Thus, 
1

in

i

i i

L
p







 
  

 
 . This proves Remark 2. Q.E.D. 

 

Remark 3. If 
1

1
n

i

i




 , then (51) is a limit of (33) as ρ approaches to zero, i.e. 

 
1

0
1

1

lim ,k

n k
i k

i

i k i

y y

p
p

p
p

















 
 
 



  (58) 

for all k=1,2,…,n. 

Proof.  
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1

0
1

1

1

lim ,k

n
k in k

ii k
ii i k

i k i

y y y

p p
pp

p p
p



















 

  
 
 




  (59) 

for all k=1,2,…,n. 
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